Classification of blow-ups and monotonicity formula for half-Laplacian nonlinear heat equation
نویسندگان
چکیده
We consider the nonlinear half-Laplacian heat equation $$\begin{aligned} u_t+(-\Delta )^{\frac{1}{2}} u-|u|^{p-1}u=0,\quad {\mathbb {R}}^n\times (0,T). \end{aligned}$$We prove that all blows-up are type I, provided \(n \le 4\) and \( 1<p<p_{*} (n)\) where p_{*} is an explicit exponent which below \(\frac{n+1}{n-1}\), critical Sobolev exponent. Central to our proof a Giga-Kohn monotonicity formula for Liouville theorem self-similar equation. This first instance of at level nonlocal equation, without invoking extension half-space.
منابع مشابه
A blow-up result for nonlinear generalized heat equation
Available online xxxx Keywords: Nonlinear heat equation Blow up Sobolev spaces with variable exponents a b s t r a c t In this paper we consider a nonlinear heat equation with nonlinearities of variable-exponent type. We show that any solution with nontrivial initial datum blows up in finite time. We also give a two-dimension numerical example to illustrate our result.
متن کاملA Formula for the Chern Classes of Symplectic Blow-ups
It is shown that the formula for the Chern classes (in the Chow ring) of blow-ups of algebraic varieties, due to Porteous and Lascu-Scott, also holds (in the cohomology ring) for blow-ups of symplectic and complex manifolds. This was used by the second-named author in her solution of the geography problem for 8-dimensional symplectic manifolds. The proof equally applies to real blow-ups of arbi...
متن کاملThe Entropy Formula for Linear Heat Equation
§0 Introduction. In a recent paper of Perelman[P1], an entropy formula for Ricci flow was derived. The formula turns out being of fundamental importance in the study of Ricci flow (cf. [P1, Sections 3, 4, 10]) as well as the Kähler-Ricci flow [P2]. The derivation of the entropy formula in [P1, Section 9] resembles the gradient estimate for the linear heat equation proved by Li-Yau in another fu...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولBlow-up in Nonlinear Heat Equations
In this paper we study the blowup problem of nonlinear heat equations. Our result show that for a certain family of initial conditions the solution will blowup in finite time, the blowup parameters satisfy some dynamics which are asymptotic stable, moreover we provide the remainder estimates. Compare to the previous works our approach is analogous to one used in bifurcation theory and our techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2021
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-021-01924-8